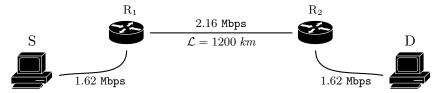


E.T.S.I.I.T - Grado en Ingeniería de Tecnologías de Telecomunicación

P1	
P2	
Р3	


Redes de Comunicaciones - Curso 2017/2018

Examen de la convocatoria de junio

Problemas

Apellidos:	Nombre:
1 Politicos.	1 1011101 0

Problema 1 (1 punto). Considérese la red de la figura, en la que se supone que el enlace dorsal, entre R_1 y R_2 , es full-duplex (bidireccional simultáneo). Se establece un esquema de reconocimiento entre esos nodos, en el que R_2 confirma todos los paquetes recibidos de R_1 , enviando una copia de los mismos. Además, se utiliza una ventana, ω , de manera que R_1 puede mandar ω paquetes consecutivos sin recibir confirmación por parte de R_2 . La fuente envía paquetes de 810 Bytes (incluyendo una cabecera de 30 Bytes), y el retardo de procesado en R_1 y R_2 es despreciable.

- (a) [0.5 puntos] Si se utiliza un valor de $\omega=3$, ¿cuánto tiempo se tardaría en transmitir un fichero de 46800 Bytes entre S y D, asumiendo que el retardo de propagación en las redes de acceso es despreciable, y que la velocidad de propagación en el enlace dorsal es $v_{\rm prop}=200~km/ms$? ¿Cuál es la tasa efectiva de la comunicación? Asumir que S es capaz de adaptar sus transmisiones (cada paquete que envía), de manera que R_1 no tenga que mantener paquetes en espera.
- (b) [0.5 puntos] ¿Cuál sería dicho tiempo si se pudiera utilizar transmisión continua en la fuente? ¿Cuál es el mínimo valor de ω que lo permitiría?

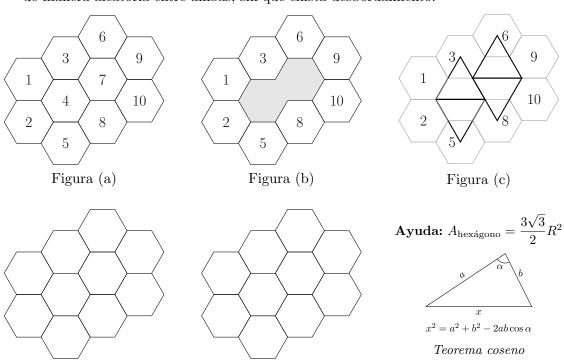
Problema 2 (3 puntos). Una compañía especializada en Big Data cuenta con una máquina para llevar a cabo análisis. En una primera configuración decide utilizar técnicas de virtualización para desplegar tres procesadores independientes en la misma. Además, debido al volumen de datos generados, no se pueden mantener peticiones en espera. Los análisis se generan (proceso de Poisson) a una tasa de $\lambda = 40~m^{-1}$, y el tiempo medio necesario para procesar cada petición (distribución exponencial negativa) es $T_s = 4.5~s$.

- (a) [0.75 puntos] Modelar el sistema con una cadena de *Markov*, y calcular la probabilidad de pérdida. Si la compañía tiene el sistema activo durante 12 horas, ¿cuánto tiempo estará usándose toda la capacidad de cómputo del sistema? ¿Cuántas horas estará en reposo?
- (b) [0.75 puntos] Calcular el número medio de análisis que hay en el sistema, utilizando dos métodos diferentes. Utilizar la relación de Little para calcular el tiempo de permanencia en la máquina de computación.

Los ingenieros que gestionan el sistema modifican su operación, de manera que se despliega un único procesador, con una capacidad de cómputo mayor. Así, el tiempo medio de procesado (para un único análisis) es tres veces menor al de la configuración inicial, $T'_s = \frac{T_s}{3}$. Además, cada vez que llega una nueva petición, su análisis se lleva a cabo de manera conjunta con las que ya estuvieran procesándose previamente (reiniciándose el proceso cada vez). Se asume que el número máximo de análisis se que pueden combinar es 3 y que, además, el tiempo medio medio de procesado para n análisis es $\frac{n \cdot T'_s}{k}$, siendo T'_s el correspondiente a una única petición, y $k \geq 1$.

- (c) [0.75 puntos] Modelar nuevamente el sistema con una cadena de Markov, y calcular la probabilidad de pérdida, si k = 1. ¿Qué valor de k hace que la probabilidad de pérdida sea tres veces menor que la de la configuración anterior?
- (d) [0.75 puntos] ¿Cuál es el tiempo medio de permanencia en el sistema cuando k = 1? ¿Cuál sería el tiempo medio que el procesador está procesando únicamente un análisis, desde que empieza su procesado hasta que bien finaliza o se reinicia, al llegar otra petición?

Problema 3 (3 puntos). Se pretende desplegar una red de comunicaciones móviles para dar servicio en un área determinada, en la que los ingenieros estiman que el exponente de pérdidas de propagación es $\gamma=2.7$. Para ello se decide utilizar antenas omnidireccionales, con una cobertura de 750 m, desplegadas según se muestra en la Figura (a). La compañía cuenta con 15+15 canales (ascendentes + descendentes), y utiliza los siguientes datos para estimar la demanda de tráfico:


- Densidad de usuarios: $\alpha = 10.26 \ u/km^2$.
- Tráfico por usuario: $\rho = 80$ mErlangs.
- (a) [0.75 puntos] Teniendo en cuenta que la celda 1 pertenece a un clúster completo, calcular la CIR del sistema, si se pretende que la probabilidad de bloqueo sea inferior al 4%. Para el cálculo de la CIR, asumir que las antenas interferentes son los de la primera corona, y que se encuentran a la distancia de reuso del punto de cálculo.

A la hora de realizar el despliegue, la compañía se percata que no se pueden utilizar los mástiles para las estaciones base 4 y 7 (ver Figura (b)), por lo que se plantea un diseño de red diferente, en el que además buscará incrementar la CIR. Para ello adquiere más canales, hasta disponer de 32 + 32 (de los que 4 + 4 se reservan para las estaciones base adicionales que se necesitarán desplegar).

(b) [0.75 puntos] Plantear un despliegue de recursos razonable para las celdas originales (sin contar las que no se pueden desplegar: 4 y 7) y calcular la CIR que caracterizaría a esta parte del sistema, dando el valor más preciso posible.

Para cubrir las zonas en las que no se ha podido desplegar las BS 4 y 7 la compañía plantea utilizar antenas sectoriales (60°), de cobertura 1.5 km, que se instalarían en los mástiles 3, 5, 6 y 8 (Figura (c)).

- (c) [0.75 puntos] Sabiendo que se utilizarán 2+2 canales en cada una de estas cuatro BS (utilizando los 4+4 reservados previamente), calcular la CIR que afectaría a este despliegue de red.
- (d) [0.75 puntos] Calcular la probabilidad de bloqueo promedio del sistema, asumiendo que en aquellas zonas en las que haya dos alternativas de conexión, las llamadas se reparten de manera aleatoria entre ambas, sin que exista desbordamiento.

Fórmula de Erlang-B: A de 0.1 a $5.0\ Erlangs.$ S de 1 a 10

	1	2	3	4	5	6	7	8	9	10
0.1	090909	004525	000151	000004						
0.2	166667	016393	001092	000055	000002					
0.3	230769	033457	003335	000250	000015	000001				
0.4	285714	054054	007156	000715	000057	000004				
0.5	333333	076923	012658	001580	000158	000013	000001			
0.6	375000	101124	019824	002965	000356	000036	000003			
0.7	411765	125964	028552	004972	000696	000081	800000	000001		
0.8	444444	150943	038694	007679	001227	000164	000019	000002		
0.9	473684	175705	050072	011141	002001	000300	000039	000004		
1.0	500000	200000	062500	015385	003067	000511	000073	000009	000001	
1.1	523810	223660	075793	020417	004472	000819	000129	000018	000002	
1.2	545455	246575	089776	026226	006255	001249	000214	000032	000004	000001
1.3	565217	268680	104286	032782	008451	001828	000339	000055	000008	000001
1.4	583333	289941	119180	040043	011088	002580	000516	000090	000014	000002
1.5	600000	310345	134328	047957	014183	003533	000757	000142	000024	000004
1.6	615385	329897	149620	056469	017749	004711	001076	000215	000038	000006
1.7	629630	348613	164960	065515	021790	006136	001488	000316	000060	000010
1.8	642857	366516	180267	075033	026302	007829	002009	000452	000090	000016
1.9	655172	383634	195474	084962	031276	009807	002655	000630	000133	000025
2.0	666667	400000	210526	095238	036697	012085	003441	000859	000191	000038
2.1	677419	415646	225378	105804	042547	014673	004383	001149	000268	000056
2.2	687500	430605	239993	116605	048802	017580	005495	001509	000369	000081
2.3	696970	444912	254343	127588	055437	020809	006791	001949	000498	000114
2.4	705882	458599	268406	138706	062423	024361	008283	002479	000661	000159
2.5	714286	471698	282167	149916	069731	028234	009983	003110	000863	000216
2.6	722222	484241	295614	161179	077331	032424	011900	003853	001112	000289
2.7	729730	496256	308738	172458	085194	036922	014041	004717	001413	000381
2.8	736842	507772	321537	183724	093288	041718	016413	005712	001774	000496
2.9	743590	518816	334009	194948	101584	046801	019020	006848	002202	000638
3.0	750000	529412	346154	206107	110054	052157	021864	008132	002703	000810
3.1	756098	539585	357975	217178	118671	057771	024946	009574	003287	001018
3.2	761905	549356	369475	228145	127409	063628	028265	011180	003959	001265
3.3	767442	558748	380660	238991	136244	069710	031818	012955	004728	001558
3.4	772727	567780	391536	249703	145152	076001	035601	014905	005599	001900
3.5	777778	576471	402110	260271	154112	082484	039608	017033	006581	002298
3.6	782609	584838	412389	270685	163105	089140	043834	019344	007678	002756
3.7	787234	592897	422379	280938	172113	095952	048270	021837	008898	003281
3.8	791667	600666	432090	291024	181119	102905	052907	024515	010245	003878
3.9	795918	608157	441529	300939	190108	109980	057737	027376	011724	004552
4.0	800000	615385	450704	310680	199067	117162	062749	030420	013340	005308
4.1	803922	622362	459623	320243	207983	124437	067933	033644	015095	006151
4.2	807692	629101	468295	329628	216846	131788	073278	037046	016994	007087
4.3	811321	635614	476726	338835	225645	139202	078774	040621	019038	008120
4.4	814815	641910	484926	347862	234373	146666	084408	044365	021229	009254
4.5	818182	648000	492901	356712	243021	154166	090170	044309 048272	023567	010494
4.6	821429	653894	500658	365384	251583	161693	096050	052338	026054	011843
4.7	824561	659600	508206	373882	260053	169234	102035	056555	028687	013304
4.8	827586	665127	515552	382206	268427	176780	108115	060917	031467	014879
4.9	830508	670483	522701	390359	276700	184320	114279	065417	034391	014573 016572
5.0	833333	675676	529661	398343	284868	191847	120519	070048	037458	018385