

INGENIERIA DE TELECOMUNICACION UNIVERSIDAD DE CANTABRIA

Asignatura: Redes de comunicación (Ingeniería de redes) Curso: Cuatro Numero de Créditos: 4 + 2 Curso académico: 2012-2013 primer cuatrimestre. Profesor responsable: Klaus D. Hackbarth klaus@tlmat.unican.es

Practica 2 a entregar hasta 12 de Diciembre 2012

Tema: Sistemas de cola

Atención: Se recomiende el uso de una hoja de cálculo con preferencia EXCEL y el uso de los Marcos y Programas entregado, si no hay otra indicación todos los valores reales se exponen con cuatro decimales.

Si no hay una indicación especifica todos los valores con cuatro decimales

Problema 1

Un operador de una red móvil de 3º Generación tiene asignado un espectro UMTS el dominio de 2100 MHz y otro espectro para HSPA en el dominio de 2600Mhz. El reserva en una Macro célula para el tráfico causado por el servicio de voz un túnel de 200 kbps tanto en UMTS como en HSPA. El operador ofrece el servicio de voz con AMR-NB que requiere un bando de ancha de 12.2 kbps en el estado ON de fuente de voz y el factor de actividad de voz se mide por 0,65. Se estima que en la Macro célula se encuentran en la hora cargada 600 usuarios con su teléfono celular encendido y que el tráfico por usuario sea 0,04 Erlang. El operador considera un bloque de 1% y que la capacidad del túnel se ocupa como máximo a 80%. El cuadro abajo resume los datos.

Marcocelula UMTS/HSPA datos generales							
frequencia UMTS/HSPA GHz	2.1 /2.6	bloqueo	0.01				
tunnel UMTS/HSPA kbps	200	AMR-NB BW	12.2				
nº de terminales en HC	600	act factor	0.65				
BH trafico/terminal Erl	0.06	Rel. ocup túnel	0.8				

Para la análisis de rendimiento (performance análisis) se realizan los siguiente cálculos:

a) Se calcula el tráfico total de voz que se ofrece y la capacidad equivalente que requiere una conexión de voz en el túnel tener en cuenta el factor de actividad y el parámetro de máxima ocupación. Después calcula el número de conexiones que ofrece cada túnel en valor real y entero. Finalmente se calcula el número de conexiones que requiere el tráfico de voz tener en cuento el valor máximo de bloqueo.

Se resume los resultados en una tabla como se indican

Equ BW per conexión	pos. nº conexiones/túnel	de	float
trafico total	pos. nº conexiones/túnel	de	entero
nr total de connexiones			

b) Con los resultados de la parte a) se calcula el tráfico Ac que cursa en UMST y la probabilidad de desbordamiento a la parte HSPA y su tráfico Ad correspondiente. El caculo de la probabilidad de desbordamiento se realiza de dos formas i) con el marco EXCEL ii) con la tabla expuesta al final (mediante interpolación entre el valor menor y mayor del tráfico con cuatro decimales). Finalmente se calculan el número correspondiente de conexiones requerido en el túnel de HSPA.

pd con formula	pd con intpol	
Ad	nr de con en HSPA	

c) Se calcula ahora el tráfico cursado en la parte UMTS, HSPA y total y factor de uso fu de banda de ancha en los túneles UMST HSPA y total Finalmente se calcula la probabilidad de perdida global y se compara con el valor previsto de 2%. Se explica la causa de la diferencia entre ambos.

parte c	UMTS	HSPA	total	pl real
traffic cursado Ac				
fu				

d) Ahora se asume que el operador puede asignar el bando de ancho en HSPA a un tipo de servicios en pasos de 25 kbps. Calcula ahora el bando de ancho que se requiere en HSPA, el número de pasos y el correspondiente bando de ancho asignado para el servicio de voz que cursa en HSPA. Calculo ahora a base de estos valores el nuevo factor de uso global fu, calcula ahora el bloqueo real

BW real en HSPA		BW en HSPA	
BW por pasos kbps	25	fu global	
nº nº de pasos		pl real	

Problema 2)

Un compañía internacional de seguros cuenta con aproximadamente $M=1.5*10^6$ clientes registrados y quiere renovar sus instalaciones de centros de atención distribuyéndolo sobre los diferentes países donde opera y conectar al cliente vía una red VoIP con acceso desde Internet y de la RPT/RDSI. Se asume que cada cliente llame por promedio 10 veces al año y que el 15% de las llamadas se sitúan en la hora cargada de los días laborales (el mes tiene 20 días laborales y el año 12 meses). El centro de atención al cliente solamente soluciona los problemas generales, para casos especiales se reconecta al cliente automáticamente con la delegación nacional. Por esa razón la duración media de una llamada con el centro es 2 min. Se asume que las llamadas siguen una fdp de Poisson y la duración de la llamada una fdp exponencial negativa.

La compañía estudia la instalación de entre uno y diez centros en diferentes países y busca la solución optima según criterios de eficacia, coste y fiabilidad. Por el reglamento de la organización internacional de trabajo tiene que asegurar que las empleadas en los centros tengan una ocupación ρ no superior de 78%. La siguiente tabla resume todos los datos requerido para el dimensionado de los centros

Parámetros para dimensionar el "call centre"							
nº cliente M	1.500000	coste anual/plaza millEURO	25				
alfa / cliente hc	a calcular	alpah/año	10				
duracion ts min	2	beta	0.88				
bloqueo	0.01	tf seg	< 10				
max ocupa/Server	0.8 (en parte a)	cost anual/linea millEURO	1				
Prob de espera	<20%						

a) Calcular el tráfico total que producen los clientes y calcular por cada centro (1 hasta 10) los siguientes valores: tráfico ofrecido por centro, número de líneas por centro considerando ambos aspectos; una pérdida máxima del 1% y la ocupación máxima de los empleados de 80%. Calcula número de líneas totales, la perdida real y realiza un grafico de la función de perdida real en relación con el número de centros. Se interpreta la función. Se calcula también el valor real de la ocupación de los empleados (se asume que el número de líneas es igual al número de empleados y que un empleado libre puede atender las llamadas de cualquier línea). Se realiza otra vez un grafico para la función de ocupación de empleados en relación con el número de centros, se interpreta la función y sobre todo se explica porque éste se reduce en el caso que el número de centros se incremente. Finalmente se calculan los costes anuales totales asumiendo que los costes por plaza decrecen ligeramente cuando el número de centros crece que se expresa con la siguiente función:

Coste anual por plaza[nr centros] = cunit/plaza*(nr centros**β/nr centros)+cunit/línea

con cunit =25.000,00 Euros β = 0,88. Se identifican el/los mínimos locales y en su caso el mínimo global sobre los costes totales. Se interpreta el resultado. Se realizan dos gráficos; i) perdida como función del número de call centre, ii) coste global en función del número de call center

Se usa el siguiente esquema en la hoja del EXCEL y marca si la celda correspondiente está dominado por la ocupación máxima p o por la pérdida pl

nr de call center	A0/cent	nº de lineas	nº total	Pb	ρ	cost/plaza	coste total	nº lin por bloq

b) Con los resultados del estudio del apartado a) la compañía decide de instalar al menos cinco centros y dimensionarlo con un número de líneas ligeramente mayor que el número de empleados para incrementar la eficacia sobre todo en el caso de varios centros. En el diseño se requiere que se consideren el cumplimento de los siguientes parámetros; valor medio de tiempo espera condicionado a los clientes que tienen que esperar en el bucle de espera t_f menor a 10 seg., Probabilidad de espera menor a 20% Probabilidad de ser rechazado (pl) menor que 1% y la ocupación por empleado sea no limitado debido al hecho que los países seleccionados por la compañía no aplican la regulación internacional. Se busca la combinación de valores para el número de líneas y de empleados en la que se minimicen el número de empleados y líneas cumpliendo los requerimientos anteriores. Se marcan en cada caso el/los parámetros (Pb,Pw, tf) que causan la limitación en reducir costes. Se calcular la reducción relativa en el número de empleados frente a la solución correspondiente del punto a y se indica la solución optima en coste. Finalmente se comparan los costes con la solución a) y se interpreta el resultado.

Aplica en la hoja de EXCEL el siguiente esquema y y marca si el calculo este dominado por ρ o Pw

nr de call center	A0/cent	nº de lineas	nº de empl	K	Pb	Pw	n	u	٧	tf	ρ	n° empl tot	Coste total

nr de call center	Nº relativo de empleados	Coste relativo

- c) ¿ La suposición inicial de una corriente de llegadas de tipo Poisson es una buena o mala aproximación a la realidad?, se justifica la repuesta
- d) ¿La supuesta de una duración con fdp exponencial negativa es correcta en el caso de llamadas a este centro?, se justifica la repuesta y se indica en caso negativo si el dimensionado proporciona una aproximación al número de líneas y empleados inferior o superior, se justifica la repuesta.

Problema 3

En la oficina de un banco se instalan 10 terminales donde cada empleado del terminal realiza un servicio de transacciones a una base de datos remota rDB. Los paquetes que se generan tienen una longitud fija. Se asume que los terminales se conectan vía una LAN a un concentrador que con una línea dedicada se conecta al rDB. Se sabe que la duración del servicio (transmisión en dirección hacia el rDB, procesamiento en el rDB y transmisión de vuelta al terminal dura aprox. 400ms. Además por medidas en la salida del concentrador se sabe que el valor medio del tráfico ofrecido al sistema es 0,7 Erlang.

- a) Indicar en la notación de Kendall el tipo de sistema e indicar en la misma notación los sistemas que se le aproximan (Son tres, una de fuente finitas y dos de fuentes infinitas, véase punto c y d)
- b) Modela el problema con un sistema de cola con fuentes finitas, calcula el tiempo de reposo t0 y el trafico que un terminal genera bajo la condición de que esté libre (no tiene ninguna transacción en curso). Notar que el problema se soluciona asumiendo un valor inicial para t0 y se calculan todos los parámetros. Después se cambia el t0 hasta el valor de trafico medio es 0,7 (t0 con cuatro decimales)
- c) Para el mismo valor de tráfico y asumiendo un proceso de Poisson tanto en la llegada como en la salida, calcula la nueva solución y compara los resultados, principalmente en función del retardo completo τ y razona la diferencia.
- d) Calcular de nuevo la solución con el mismo valor de tráfico, asumiendo un proceso de Poisson en la llegada y una duración del servicio adecuado a la descripción del problema. Compara los resultados principalmente en función del retardo completo τ y tw, razona la diferencia
- e) Estudia cual de las tres aproximaciones es más real y cual la menos real; razone la repuesto

Usa en la hoja de EXCEL el siguiente esquema y indica el tipo de sistema en la anotación de Kendal

t0 (tthink) seg		а				
ts s	0.4	epsilon	A-pw (b)			
M	10	alfa				
	p0	pw	n	u	tw	tau
Tipo SdC en b)						
Tipo de SdC en c)						
Tipo de SdC en d)						
Amedia						
lamda med		1				

Problema 4

Un operador conecta a un MPoP clientes que demandan un servicio multimedia que se compone de tres componentes, i=1,2,3 (voz, audio, video) en una conexión de 10 min los servicios se usan por promedio por 5 min de voz, tres minutos de audio y 2 minutos de video. El corriente de cada componente produce una velocidad binario fijo que se encapsula en paquetes con un tiempo fijo ti, véase la tabla abajo.

i	1	2	3
vi [kbps]	12.4	64	128
ti [ms]	20	50	40
L [oct]			
duración total en i min	5	3	2
Pri			

- a) Se calculan las longitudes de los paquetes y la probabilidad que paquetes de cada componente
- b) Se calcula la velocidad media de una fuente multimedia, su varianza, desviación típica y el coeficiente de la varianza

E(v) kbps	
V(v) kbps^2	
σ (v) kbps	
C (v)	

c) Ahora se calcula la tasa de paquete para cada componente y su totalidad por una conexión, el valor media, la varianza, la desviación típica y el coeficiente de la varianza sobre los paquetes de una conexión.

i	1	2	3	total
α p/s				
Pr L				
E(l				
V(I	_)			
σ (L)			
C ((L)			

d) El operador quiere ahora dimensionar el bando de ancho que conecta el MPoP con un concentrador y se asume que el bando de ancho se ocupa por 80%. Se calculan los valores de la siguiente tabla con un sistema de cola adecuado

М	BW [kbps]	ts ms	λ [p/s]	n	т [ms]
10					
20					
30					
40					
50					
60					

70			
80			
90			
100			

e) Ahora se asume que el operador usa el esquema del NPPQ y da a la voz la prioridad más alta y al video el más bajo. Calcula ahora los retardos para cada servicio, se usan las velocidades calculado en la parte e) y se aplica la siguiente tabla

	٧	1	2	3	1	2	3	1	2	3	Nom	1	2	3	1	2	3
М		ts	ts	ts	λ	λ	λ	Α	Α	Α	Com	tw	tw	tw	T	T	T
10																	
20																	
30																	
40																	
50																	
60																	
70																	
80																	
90																	
100																	

Tabla de Erlang-B

pb nº de		0,02	0,2	0,21	0,22	0,23	0,24	0,25	0,26	0,27	0,28	0,29	0,3
circuitos			45.607	45.040	46.000	46 ==0	46074	47.406	47.506	47.000	40.000	40.546	40.000
	4-	0.0006	15,607	15,919	16,233	16,550	16,871	17,196	17,526	17,860	18,200	18,546	18,899
	15	9,0096	9	4	6	9	7	7	2	8	9	9	3
			16,807	17,137	17,470	17,806	18,147	18,491	18,841	19,196	19,557	19,924	20,298
	16	9,8284	1	3	3	7	0	7	3	3	2	5	7
	4-	10,655	18,009	18,358	18,710	19,065	19,425	19,789	20,159	20,534	20,916	21,304	21,700
	17	8	8	5	3	7	2	5	1	4	1	5	4
		11,490	19,215	19,582	19,953	20,327	20,706	21,089	21,479	21,874	22,277	22,686	23,104
	18	9	6	7	1	3	1	9	3	8	1	7	1
		12,333	20,424	20,809	21,198	21,591	21,989	22,392	22,801	23,217	23,640	24,070	24,509
	19	0	1	5	4	4	2	4	6	3	2	7	6
		13,181	21,635	22,038	22,445	22,857	23,274	23,697	24,125	24,561	25,004	25,456	25,916
	20	5	1	6	9	6	4	0	8	6	9	4	7
		14,036	22,848	23,269	23,695	24,125	24,561	25,003	25,451	25,907	26,371	26,843	27,325
	21	0	4	9	5	8	5	3	7	5	2	6	2
		14,895	24,063	24,503	24,946	25,395	25,850	26,311	26,779	27,254	27,738	28,232	28,735
	22	9	6	1	9	8	3	2	2	9	9	1	0
		15,760	25,280	25,738	26,200	26,667	27,140	27,620	28,108	28,603	29,107	29,621	30,145
	23	9	6	1	0	3	6	6	0	5	9	8	9
		16,630	26,499	26,974	27,454	27,940	28,432	28,931	29,438	29,953	30,478	31,012	31,557
	24	6	4	6	7	3	2	2	1	4	0	6	9
		17,504	27,719	28,212	28,710	29,214	29,725	30,243	30,769	31,304	31,849	32,404	32,970
	25	6	6	6	7	6	1	1	3	4	2	4	8
		18,382	28,941	29,451	29,967	30,490	31,019	31,556	32,101	32,656	33,221	33,797	34,384
	26	8	3	9	9	1	2	1	6	4	3	1	6
		19,264	30,164	30,692	31,226	31,766	32,314	32,870	33,434	34,009	34,594	35,190	35,799
	27	8	3	5	4	7	3	1	8	3	3	6	2
		20,150	31,388	31,934	32,485	33,044	33,610	34,185	34,768	35,363	35,968	36,584	37,214
	28	4	4	2	9	4	4	0	9	0	0	9	5
		21,039	32,613	33,177	33,746	34,323	34,907	35,500	36,103	36,717	37,342	37,979	38,630
	29	4	7	0	4	0	5	8	9	5	6	9	4
		21,931	33,840	34,420	35,007	35,602	36,205	36,817	37,439	38,072	38,717	39,375	40,047
	30	6	0	7	9	5	3	4	6	7	7	5	0
		22,931	34,840	35,420	36,007	36,602	37,205	37,817	38,439	39,072	39,717	40,375	41,047
	31	. 6	. 0	7	. 9	5	. 3	4	. 6	7	7	5	0
		23,931	35,840	36,420	37,007	37,602	38,205	38,817	39,439	40,072	40,717	41,375	42,047
	32	6	0	7	9	5	3	4	6	7	7	5	0
	-	24,931	36,840	37,420	38,007	38,602	39,205	39,817	40,439	41,072	41,717	42,375	43,047
	33	6	0	7	9	5	3	4	6	7	7	5	0
		25,931	37,840	38,420	39,007	39,602	40,205	40,817	41,439	42,072	42,717	43,375	44,047
	34	6	0	7	9	5	3	4	6	7	7	5	0
	٠.	26,931	38,840	39,420	40,007	40,602	41,205	41,817	42,439	43,072	43,717	44,375	45,047
	35	6	0	7	9	5	3	4	6	7	7	5	0