
IEEE Communications Magazine • December 2010124 0163-6804/10/$25.00 © 2010 IEEE

INTRODUCTION

Cloud computing infrastructure providers offer
computational resources like virtual machines
(VMs), storage, and networking to third parties.
Cloud services in this proposal are defined as
software services that use these resources. A
complete service consists of appropriately con-
figured software components deployed into a set
of dynamically allocated infrastructure resources.
Cloud computing enables new pay-per-use mod-
els in which services can be created and scaled
on-demand, while only incurring charges for the
actual usage of the resources involved.

However, this comes at the cost of increased
management overhead, to dynamically deploy,
redeploy, and reconfigure software components to
take advantage of the flexible compute resources
available. Users can request VMs from cloud
infrastructure providers, but these machines have

to be configured and managed properly. This is
especially relevant when requesting large numbers
of VMs, since the time needed to configure all of
them can become a limiting factor, potentially off-
setting the advantages of flexible compute infras-
tructures. For this reason, new tools and methods
for managing and orchestrating VMs are required
in order to automate the different steps involved
in the provisioning and continuous operation of
cloud services. How thousands of VMs can be
dynamically created and configured automatically
for a particular purpose is still an open issue for
the users of cloud providers.

Current automated service deployment solu-
tions do not fit well with cloud scenarios, as they
treat infrastructure deployment as a separate
problem. The main aim of this article is to
describe an integrated architecture that enables
the automated provisioning and management of
cloud services. It orchestrates the different steps
involved, such as virtual infrastructure manage-
ment, in addition to installing, configuring, mon-
itoring, running, and stopping software
components in these virtual machines. This
architecture is extensible, able to manage arbi-
trary software components and use different
cloud providers to deploy infrastructure in the
cloud. The architecture provides an integrated
end-to-end service management solution, taking
a service from user requirements down to an
actual deployed system. It enables users to select
a service from a catalog of predefined service
templates allows them to customize them accord-
ing to his/her requirements, and deploy them
automatically. A template integrates the service
deployment and reconfiguration behavior with a
description of the service topology, in which logi-
cal collections of resources are described. This
approach incorporates the flexible allocation of
computing resources into the service design
stage, naturally supporting operations to scale
the deployed components and change their con-
figuration appropriately, to fully take advantage
of the new computing paradigm.

To describe the architecture, this article has
been structured as follows. The next section pro-

ABSTRACT

The automated provisioning of services in
cloud computing presents many challenges.
Users can request virtual machines from cloud
infrastructure providers, but these machines
have to be configured and managed properly.
This article describes an architecture that
enables the automated deployment and manage-
ment of the virtual infrastructure and software
of services deployed in the cloud. The architec-
ture takes a template description of a service,
which encapsulates requirements, options, as
well as behavior for a collection of resources and
orchestrates the provisioning of this service into
a newly created set of virtual resources. The
template is used for integrating the deployment
and reconfiguration behavior of a service in
which logical components are described along
with options to scale them and appropriately
change their configuration. Services are
described through a set of components, which
can easily be mapped and remapped to dynami-
cally created resources, letting services take full
advantage of flexible cloud resources.

TOPICS IN NETWORK AND SERVICE MANAGEMENT

Johannes Kirschnick, Hewlett Packard Laboratories

Jose M. Alcaraz Calero, University of Murcia and Hewlett Packard Laboratories

Lawrence Wilcock and Nigel Edwards, Hewlett Packard Laboratories

Toward an Architecture for the
Automated Provisioning of
Cloud Services

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 124

IEEE Communications Magazine • December 2010 125

vides some previous efforts related to the automat-
ed provisioning of services. We then describe the
architecture and the languages used to carry out
the provisioning of services. After that, we describe
implementation details and provide statistics about
the implementation. Finally, we discuss some con-
clusions and give an outlook to future work.

RELATED WORK
Several research works related to the automated
provisioning of services in distributed architec-
tures have been published in recent years. PUP-
PET [1] and CHEF [2] are software solutions to
automatically deploy software in distributed
environments. Other more advanced tools are
SmartFrog [3], CHAMPS [4], and Quartermaster
[5], which provide integrated solutions to man-
age not only the automatic deployment of soft-
ware but also the entire life cycle of the running
software components, similar to a number of
general approaches for managing services, such
as COPS, WS-Management, and WSDM proto-
cols. Furthermore extension to existing deploy-
ment engines have been developed to orchestrate
service deployments, such as Capistrano [6] and
Control Tier [7].

While these solutions share the same aim,
they do not deal well with some of the essential

problems related to cloud scenarios. In particu-
lar, they do not integrate virtual infrastructure
management as part of the software life cycle,
and thus do not target the elastic and the dynam-
ic nature of scalable infrastructure inherent to
the cloud. These are key features of our pro-
posed architecture, which make it suitable for
deploying services in cloud scenarios.

Most of the current cloud providers, such as
Amazon EC2, ElasticHosts, GoGrid, TerraMark,
and Flexiant, merely offer infrastructure on
demand, and do not offer support to automatical-
ly deploy and configure software therein. For this
reason, some vendors and companies have recent-
ly appeared, such as Right Scale [8] and Scalr [9],
which provide scalable managed services on top
of these infrastructures. This article describes an
architecture that directly addresses the need for
intuitive abstractions that integrate both the
deployment and configuration of software with
the ability to scale the associated infrastructure to
provide such services in the cloud.

ARCHITECTURE
From an architectural point of view, a cloud ser-
vice can be defined as a number of software
components with their accompanying configura-
tion parameters, running on a cloud infra-

Figure 1. Overall system architecture and interaction.

Physical
machine

Physical
machine

Physical
machine

Virtual infrastructure

Service API

IaaS API

Monitoring
manager

Infrastructure
manager

Physical
machine

Configuration
manager

Package
manager

Application
manager

VM

Service
orchestrator

Service orchestrator

D
es

ig
n

la
ye

r
O

rc
he

st
ra

ti
on

la

ye
r

A
bs

tr
ac

ti
on

la

ye
r

C
lo

ud
 in

fr
as

tr
uc

tu
re

la

ye
r

Service
catalog

Programmatic
access Template designer

VMVM

Component
repository

Vm connection manager

The provisioning of a

new cloud service

involves the creation

of the virtual IT

infrastructure,

followed by an initial

installation of the

necessary software

components into this

infrastructure, along

with the correct

configuration and

subsequent ignition

of the system.

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 125

IEEE Communications Magazine • December 2010126

structure. The provisioning of a new cloud ser-
vice involves the creation of the virtual IT infra-
structure, followed by an initial installation of
the necessary software components into this
infrastructure, along with the correct configura-
tion and subsequent ignition of the system. A
particular characteristic of cloud services is that
as load on the system changes, the service needs
to be rescaled to either allocate additional or
release unneeded infrastructure resources and
appropriately reconfigure the deployed software
components.

Figure 1 depicts an overview of our architec-
ture. First, the cloud infrastructure layer repre-
sents the virtual IT resources provided by the
cloud infrastructure platform. Second, the service
orchestrator is responsible for creating new cloud
services. The orchestrator is composed of two
layers: the abstraction and orchestration layers.
The orchestration layer coordinates the steps
involved in the automatic provisioning of cloud
services, and the abstraction layer provides
abstractions of the various interfaces to manage
a heterogeneous set of cloud providers, as well
as abstractions of various mechanisms to install,
configure, and start software components. Final-
ly, the design layer offers a high-level tool and
graphical interface to provide end users with an
intuitive way to customize and automatically
provision cloud services based on a predefined
service catalogue. The following subsections
describe each of the layers in detail.

CLOUD INFRASTRUCTURE LAYER
Currently, there are a number of different com-
mercial vendors with comparable infrastructure
offerings. Prominent in the commercial space are
Amazon EC2 as well as RackSpace. Eucalyptus
[10] provides an open source cloud provider
stack, which can be used to implement a private
cloud. Even though the actual offering, pricing,
and interactions differ, all of them have in com-
mon at least the ability to dynamically create and
destroy infrastructure through means of a service
application programming interface (API) (IaaS).
They mostly offer only limited management capa-
bilities, thus our architecture only assumes that
we can request a virtual machine from a cloud
provider and programmatically connect to it.

ABSTRACTION LAYER FOR DEPLOYMENT
The abstraction layer hides the complexity
involved in managing different aspects of the life
cycle stages. It is composed of five different
components: the infrastructure, package, applica-
tion, configuration, and VM connection manager.
Each of these is responsible for its respective
aspect of the life cycle and presents a high-level
interface to the service orchestrator. They act as
configurable actuators that enable the service
orchestrator to enact a service deployment, for
each of the individual virtual resources and soft-
ware components, as a set of coordinated inter-
actions with these high-level components, from
infrastructure deployment to software installa-
tion, configuration, startup, and reconfiguration.

Each cloud infrastructure provider offers its
functionality via an IaaS API, but the lack of a
common standard across them creates the need
for individual vendor-specific adaptors. The

infrastructure manager encapsulates the specifics
of each vendor, and provides a common inter-
face to create and destroy virtual resources on
demand. Furthermore, each vendor can also
require particular protocols for connecting to
newly deployed virtual resources, thus making
automation systems highly vendor-specific. To
hide this complexity and abstract from operat-
ing-system-specific interaction protocols, the VM
connection manager provides a consistent way to
access VMs, depending on the target operating
system, remote connection software involved,
firewall policies, infrastructure provider policies,
and so on; it offers support for a number of pos-
sible connection protocols, such as SSH tunnel,
Remote Desktop Connection, VNC, and Telnet.

There are many different mechanisms to
install, configure, and start software components,
which depend on the operating system and the
peculiarities of a particular software component.
There is a need to abstract from these specifics,
and direct the responsibility for the installation,
configuration, and runtime management of a
software component to the corresponding man-
agers. Each manager interacts with the environ-
ment to actuate the deployment of the software
components, using dynamically loaded compo-
nent-specific descriptions of the set of required
actions to carry out the high-level operations.

The package manager is responsible for the
installation of software packages. It can delegate
to existing software package installation tools
such as apt (Advanced Package Tool), or inter-
act directly with the file system to install soft-
ware components. The configuration manager is
utilized to dynamically configure and reconfigure
software components. It provides a set of conve-
nient tools to hide component-specific configura-
tion details, such as access to API-based software
manipulation, file template mechanisms, or web
session replay capabilities for web components.
Finally, the application manager manages the
runtime state of software components, and inter-
acts with the installed and configured software
components to initiate startup or shutdown
sequences.

ORCHESTRATION LAYER
This layer orchestrates the steps involved in the
automated provisioning of cloud services, utiliz-
ing the aforementioned managers. A service API
is exposed to enable users to submit an initial
model of the service to be deployed, and subse-
quently trigger reconfiguration and topology
changes of existing services. The model is a
topological description of the desired state of
the service, consisting of named collections and
sub-collections of logical components, their
required configurations, and orchestration
dependencies for the various actions required to
install, configure, and ignite them. It further-
more specifies the desired mappings of compo-
nents to virtual resources. The model can be
constructed programmatically, or by using a tem-
plate design approach. The model holds all the
necessary configuration parameters, such as the
cloud provider to use, the size of the virtual
resources, as well as individual software compo-
nent parameters, to deploy a running service.
The template language used to generate an

The Design Layer

offers a high-level

tool and graphical

interface to provide

end users with an

intuitive way to

customize and

automatically

provision cloud

services based on a

predefined service

catalogue.

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 126

IEEE Communications Magazine • December 2010 127

instance of a model is discussed later, and serves
as the starting point of the discussion of the
sequence diagram depicted in Fig. 2.

Figure 2 shows a sequence diagram of the
individual steps involved in the automated provi-
sioning of a service instance. The use case starts
when the user selects a template from a preexist-
ing set of service definitions. This parameterized
template, together with a set of user customiza-
tions, is used to generate a full model of the ser-
vice and submitted to the service API for
deployment. The service orchestrator coordinates
the actions to reify four logical views for deploy-
ing the system, while taking into account the
specific dependencies expressed in the service
model. It inspects the model and subsequently
passes parts of it down to the individual man-
agers, delegating work on individual aspects of
the service deployment. As the deployment pro-
gresses, the actions of the individual managers
manipulate the model to reflect the current state
of the model, such as the running state of a VM
or life cycle state of software components.

First, the infrastructure view, which describes
the set of required virtual resources, is passed to
the infrastructure manager, which in turn uses
this information to select the appropriate cloud
provider and request the virtual infrastructure
creation. Additionally, the appropriate mecha-
nisms to connect to these VMs are registered
with the VM connection manager.

Second, the installation view is passed to the
package manager to correctly install all required
software components. For each software compo-
nent, the manager finds the correct component-
specific package specification from the
component repository. This specification describes
the required sequence of abstract commands to
execute to carry out the installation, such as
installing a specified set of packages from a cen-
tral location. The package manager utilizes the
VM connection manager component as a gateway
to connect to the associated VMs to perform the
installation.

The component repository holds both a pack-
age description and a configuration description
for all the different software components that
the service orchestrator is able to manage. These
descriptions are written in a component descrip-
tion language introduced later. The managers
execute these descriptions for each individual
component in response to requests from the ser-
vice orchestrator. When the descriptions are exe-
cuted at runtime, they have access to the
instantiated model to retrieve individual configu-
ration parameters and runtime state of the sys-
tem. Abstract commands referenced in the
descriptions are implemented by the individual
managers through a set of tools that can carry
out the work on the system.

Third, the configuration view is passed to the
configuration manager to perform the configura-
tion. Software components can be configured
both before they are started (preconfiguration)
and immediately after they are started (post-con-
figuration), or as a result of topological changes
to the system (reconfigure). To perform these
configuration steps of a component, the configu-
ration manager retrieves the corresponding con-
figuration description from the component
repository, and performs the encoded configura-
tion. A typical configuration involves the genera-
tion of a configuration file from a template,
using the component’s configuration attributes
stored in the model, and then copying the gener-
ated file to a specific location in the remote
VM’s file system.

Finally, the runtime state view is passed to
the application manager component, to initiate
the startup of the individual software compo-
nents in the VMs. As with other managers, the
component-specific actions to carry out opera-
tions such as start or stop, are encoded in a
description retrieved from the component reposi-
tory.

Figure 3 shows a state diagram of the life
cycle associated with each software component.
It includes basic states such as Installed, Pre-Con-

Figure 2. Sequence diagram for all the steps involved in provisioning cloud services.

create
infrastructure
(infrastructure

view) IP=
createVM()

Service
API

Deploy(system
Description)

IaaSAPI

VM

Service
orchestrator

Infrastructure
manager

VMConnector
Manager

Application
Manager

Component
repository

Package
manager

Config
manager

Deploy(system
Description)

createVM
(credential)

registerVMConnectionMethod
(vmName, credential)

installComponent(installationview) getInstallationformation(component)

performInstallation(credential)

performConfiguration(credential)

startComponent()

performConfiguration()

startComponent()

performInstallation(credential)
configComponent(configurationView)

startComponent(runtimeView)

getConfigformation
(component)

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 127

IEEE Communications Magazine • December 2010128

figured, and Running. The configuration state is
split into pre-, post-, and reconfigure phases to
account for late binding information, which only
becomes available at certain deployment stages.

The transitions between states are managed
by the service orchestrator, and take into account
any dependencies between components
expressed in the model. These constraints define
the synchronization points for the parallel
deployment of a service instance. For example, a
web server may require that a database server is
running before it can be started. It is defined as
a dependency between the state running of the
web server and the state running of the database
component.

The orchestrator will try to parallelize indi-
vidual deployment steps. This is an important
characteristic of this architecture, since it pro-
vides an efficient way to deploy large numbers of
components simultaneously. Orchestration infor-
mation in the model can constrain the parallel
deployment if needed by component-specific
requirements.

After successful deployment, the service
orchestrator is able to monitor the different soft-
ware components. The architecture relies on
third party monitoring solutions, such as Nagios
or Ganglia, which are optionally installed in the
VMs as part of the software deployment. The
reported monitoring information enables the
tracking of the VMs and their software compo-
nents in real time.

DESIGN LAYER
The design layer can automatically generate ser-
vice model instances. An instance is generated
from a parameterized template that describes
the generic topology of a cloud service in terms
of named collections of software components,
deployment orchestration information, and con-
straints about how these components are
mapped to VMs. The template describes best
practice for how to instantiate and subsequently
flex a service. The parameters of the template
are expressed to capture important require-
ments, and control the instantiation process
from the template to a specific model. For exam-
ple, a high-level sizing parameter might be speci-
fied, with possible values high, medium, or low,
which when selected determines the initial num-
ber of web servers or application servers in the
service.

Using the Collection abstraction, the tem-

plate describes possible flexing points of the ser-
vice to allow dynamic scaling of the service
deployment in response to observed behavior.
These flexing points facilitate an integrated end-
to-end management solution for deploying cloud
services and subsequently right-sizing them to
measured demands. Flexing points offer simple
addition and subtraction operations to higher-
level measurements-driven policies.

Templates are stored in a central service cat-
alog. This catalog can be used by a graphical
tool to provide users the ability to customize the
initial instantiation of a cloud service according
to his/her requirements and trigger the automat-
ed deployment. It enables a requirement-driven
service design, while hiding the complexity
involved in defining valid service topologies.

DOMAIN-SPECIFIC LANGUAGES FOR
PROVISIONING CLOUD SERVICES

This proposal introduces a set of domain-specific
languages (DSLs) to describe the desired state
of the virtual infrastructure and software compo-
nents for cloud services, and how the software
components are installed, configured, and man-
aged to meet the desired state. The languages
are implemented using Groovy [11], taking
advantage of its dynamic nature to create declar-
ative-style DSLs, combined with powerful script-
ing features to simplify rapid prototyping without
any additional requirement for compilers or
interpreters. It should be noted that a discussion
of the complete syntax and semantics is beyond
the scope of this article.

The following subsections explain the DSLs
in detail. A typical three-tier web application,
composed of a load balancer, database, and
varying number of web servers, is used as a run-
ning example. The specific example illustrates a
TikiWiki service, a web-based groupware solu-
tion for team collaboration.

COMPONENT DESCRIPTION LANGUAGE
The Component Description Language (CDL) is
used to define the deployment and configuration
behavior of specific types of software compo-
nents, such as a web server or application server.
The language itself is structured in a way that
resembles a declarative style, but contains exe-
cutable logic that is executed in the context of
the model for a specific component. The logic

Figure 3. State diagram of the life cycle for cloud services.

Started Running

Re-
Configure Remove

Remove

Install
Start

Stop

Post-
Configure Pre-

Configure

Initialized Installed Pre-
configured

After the successful

deployment, the

Service Orchestrator

is able to monitor

the different soft-

ware components.

The architecture

relies on third party

monitoring solutions,

such as Nagios or

Ganglia, which are

optionally installed in

the VMs as part of

the software

deployment.

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 128

IEEE Communications Magazine • December 2010 129

can therefore reach into the model to resolve or
modify additional variables that represent con-
figuration parameters, desired state, or actual
state.

Each software component has three different
descriptions: the component, configuration, and
package descriptions. The component description
defines the attributes of the model entity for a
software component, and serves as a configura-
tion store holding runtime state. Templates ref-
erence these descriptions to define topologies of
desired software components.

The configuration and package descriptions
share a similar syntax. The former defines how
to manage the configuration process associated
with a software component, whereas the latter
defines how to manage the installation of this
component. The content of these files define the
sequence of steps to be executed. They reference
abstract commands provided by the execution
environment of the package and configuration
managers, respectively.

The following example shows an excerpt for
the package specification of a MySQL database
software component, which is part of the TikiWi-
ki service, interpreted by the package manager.

package_specification {
applies { version == “5”}
specification{

rpm(“mysql-shared,” “mysql-5.0.26”)
tar(“mysql-db,” “/mysql/data”)

}
}

The package manager first selects the appro-
priate specification section to be applied, by eval-
uating the applies clause. The example defines a
specification section in which the worker tools
rpm and tar are referenced to first install a set of
packages and then to un-tar a specific file into a
given directory in the VM.

The configuration specification follows a sim-
ilar approach. It defines how to manage the con-
figuration of the software component, taking
into account the component’s life cycle states
previously described. The following is an excerpt
of the corresponding configuration specification
for a MySQL database.

config_specification{
applies(version == “5”)
preconfigure {

file(“innoDB.cnf,” “/mysql/innoDB.cnf”)
}
postconfigure{

command(“mysqladmin-newpw
${comp.pass}”)

}
}

The description defines sections that corre-
spond to actions to be taken in transitions of the
component’s life cycle states. The example speci-
fies that in the preconfigure phase a configura-
tion file (innoDB.cnf) is copied to the VM
before the start phase is initiated. The actions of
a declared phase are evaluated before the corre-
sponding component state is reached. Similarly,
in the postconfigure phase, the default password

is changed to a value retrieved from the compo-
nent description. The reference to the new value
of the password, denoted comp.pass in the exam-
ple, is resolved against the runtime model avail-
able during the deployment. The load balancer,
Apache webserver, and TikiWiki components of
the TikiWiki service can be described in a similar
manner.

TEMPLATE DESIGN LANGUAGE
The Template Design Language (TDL) is used
to describe the architecture of a cloud service, in
terms of both the virtual infrastructure and the
software components to be deployed. It repre-
sents the touch point between the service orches-
trator and a user trying to deploy a new service.
It captures all the VMs that need to be present,
the software components to be deployed into
them, the cardinalities associated with these soft-
ware components, and the deployment depen-
dencies that exist between them. It can also
define default values for model entities. The
software components deployed into virtual
machines are referenced from the component
repository introduced in the previous section. In
particular, these software components are refer-
enced using the component description classes
previously introduced.

The following shows an example template to
provision a new TikiWiki service. The database
used in this example corresponds to the MySQL
software component used earlier.

architecture(
defaults: {

vm(provider = “HP-internal,” baseimage =
“golden-ubuntu”)

}
model : {
// Software components — Static
vm {

lb = LoadBalancer(type : “apache”)
}

vm {
db = MySQL(type: “innoDB,” user: “alice,”

pass: “share”)
}

// Dynamic Range Components
vmrange(count: 1, name: “webserver

Collection”){
ws = Apache(memory: 256, loadbalancer:

lb,
webapp: TikiWiki(ver: “2.0,”

dbService: db))
}

dependencies {
// Start Apache web server after DB runs
depends(op: “ws.start,” on: [“db.started”])

}
}

The template is split into three subsections.
The defaults subsection defines default parame-
ters used in the model, for example, the cloud
provider to use. The model section defines the
software components to be deployed and their
allocation to VMs. Finally, the dependencies sec-

The Template Design

Language (TDL) is

used to describe the

architecture of a

cloud service, in

terms of both the

virtual infrastructure

and the software

components to be

deployed. It

represents the touch

point between the

service orchestrator

and a user trying to

deploy a new

service.

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 129

IEEE Communications Magazine • December 2010130

tion defines deployment dependencies between
life-cycle states of software components. Each
software component is initialized with a set of
attributes, as well as references to other software
components to enable the exchange of late bind-
ing configuration information. The values of
these attributes can be configured from the
parameters chosen when the template is instanti-
ated from the service catalog. Furthermore, the
language enables the definition of collections of
named components that define service flexing
points, specified using vmrange, which in the
example defines a scalable collection of Apache
web servers.

IMPLEMENTATION
As a proof of concept, a prototype of the archi-
tecture explained earlier, using the languages
exposed in the previous section, has been imple-
mented. This prototype is called SLIM and is
used internally at Hewlett-Packard Laboratories
to develop cloud services. It has been imple-
mented in Java, while both the Template Descrip-
tion and the Component Description Language
have been implemented in Groovy [11].

Figure 4 shows a snapshot of the graphical
interface of the template designer tool. This
snapshot corresponds to a successful deploy-
ment of the TikiWiKi example outlined in the
previous section. The upper part of the figure
shows the template designer interface loaded
with the service. The lower part shows a graphi-
cal representation of the virtual infrastructure

and the software components deployed within
them. It corresponds to three separate VMs,
one representing the load balancer (vm1), a sec-
ond representing a MySQL database instance
(vm2), and a third representing an Apache web
server running the TikiWiKi web application
(vm3). Finally, the right part of the figure shows
the high-level parameters defined by the tem-
plate in order to customize the cloud service
before provisioning it.

To analyze the scalability of our SLIM proto-
type, a series of tests have been executed to
measure the time needed to deploy new cloud
services, while varying the number of web appli-
cation servers from 1 to 14. Both the time for
creating the infrastructure and the time it took
to automatically provision the software have been
measured independently. These tests were exe-
cuted on the HP internal cloud testbed.

Figure 5 shows the execution results, which
highlight that the time needed to provision the
software components is small, compared to the
infrastructure creation time. Infrastructure pro-
visioning time is related to a particular cloud
provider, whereas deployment time is related to
our implementation. Note that an almost con-
stant trend can be observed for the time it takes
to deploy the service, demonstrating good scala-
bility results. This corresponds with our expecta-
tion that the dependency-constrained parallel
deployment orchestrator would find the maximal
parallelism to deploy the software components.
Thus, increasing the number of VMs should not
significantly increase the overall amount of time

Figure 4. Snapshot of the graphical interface of the service catalog and template designer tools.

vm1

Ganglia

Apache

ApacheModLoadBalancer

GangliaApacheMonitor

ip 10.160.79.2

vm2

Ganglia

Mysq1

ApacheMysq1Monitor

ip 10.160.79.3

vm3

wsCellCollect

Ganglia

Apache

ApacheModPhp

TikiWiki

GangliaApacheMonitor

ip 10.160.79.1

Templates enable

requirements-driven,

rapid service provi-

sioning, while hiding

the configuration

complexities from

the end user. As a

proof of concept, a

prototype has been

implemented to con-

firm the advantage

of the parallel

deployment

approach.

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 130

IEEE Communications Magazine • December 2010 131

it takes to deploy the cloud service, in contrast
to a sequential deployment approach, which
exposes a linear time increase.

CONCLUSION
An architecture for the automated provisioning
of cloud services has been described and success-
fully validated in this proposal. It offers extensi-
ble ways to include new cloud services definitions.
Furthermore, a parallel deployment method sup-
ported by an orchestration model has been inte-
grated into the architecture to significantly
reduce the time needed to deploy large cloud
services. Moreover, the architecture enables the
declarative definition of services using a Template
Description Language for the topology design and
a Component Description Language to specify the
individual configuration and deployment behav-
ior of software components. Templates enable
requirements-driven rapid service provisioning,
while hiding the configuration complexities from
the end user. As a proof of concept, a prototype
has been implemented to confirm the advantage
of the parallel deployment approach.

It is worth mentioning that bandwidth
requirements for provisioning new services are
considerably reduced using our approach, as cur-
rent solutions offered by cloud providers require
users to upload complete volume images, (usual-
ly several gigabytes) containing preinstalled soft-
ware. By contrast, our approach makes it feasible
to create service descriptions that can ignite a
complete service simply by applying deltas to
generic operating system images to install the
software components

As future work, it is expected to include auto-
nomic computing features in the service orchestrator
in order to provide self-management capabilities
such as fault-tolerant cloud services, service level
agreement management, and quality of service
assurance, utilizing the definition of named collec-
tions to adapt systems programmatically.

ACKNOWLEDGMENT
Thanks to the Fundacion Seneca for sponsoring
this research under its post-doctoral grants and
project 04552/GERM/06. Thanks to the Euro-
pean Commission for partially supporting this
research under project FP7- CIP-ICT-
PSP.2009.7.1-250453 SEMIRAMIS. The authors
would like to thank Matthias Schwegler for his
valuable contribution to this research.

REFERENCES
[1] J. Turnbull, Pulling Strings with Puppet, APress, 2007.
[2] A. Jacob, “Infrastructure in the Cloud Era,” Proc. Veloci-

ty Conf., 2009.
[3] P. Goldsack et al., “The Smartfrog Configuration Man-

agement Framework” ACM SIGOPS Operating Sys. Rev.,
vol. 43, no. 1, 2009, pp. 16–25.

[4] A. Keller et al., “The CHAMPS System: Change Manage-
ment with Planning and Scheduling,” Proc. IEEE/IFIP
NOMS, vol. 1, 2004, pp. 395–408.

[5] S. Singhal et al., “Quartermaster — A Resource Utility
System.” Proc. 9th IFIP/IEEE Int’l. Symp. Integrated Net.
Mgmt., 2005, pp. 265–78.

[6] D. Frost, “Using Capistrano,” Linux J., vol. 177, 2009, p.
8.

[7] D. Solutions, “Control Tier,” Tech. Rep., 2010;
http://controltier.org/wiki/Main_Page.

[8] Right Scale, “Cloud Management Platform”;
http://www.rightscale.com/.

[9] Scalr; https://www.scalr.net/.
[10] D. Nurmi et al., “The Eucalyptus Open-Source Cloud-

Computing System,” Proc. 9th IEEE/ACM Int’l. Symp.
Cluster Computing and the Grid, 2009.

[11] D. Koenig et al., Groovy in Action, Manning Publica-
tions, 2007.

BIOGRAPHIES
JOHANNES KIRSCHNICK (Johannes.kirschnick@hp.com) holds a
degree in computer science from the Technical University
of Munich and is currently a researcher at HP Labs, Bristol,
United Kingdom. He is part of the Automated Infra-
structure Laboratory, focusing on developing technologies
for highly automated, secure, and dynamic instantiation
and management of cloud computing infrastructure and
services.

JOSE M. ALCARAZ CALERO [M] (jmalcaraz@um.es) holds a
Ph.D in computer science from the University of Murcia. He
has been working at the University of Murcia on several
European and international projects. Currently, he is a
researcher at HP Labs. His research areas include cloud
computing, semantic web, policy-based systems, and secu-
rity. He is a member of the ACM.

LAWRENCE WILCOCK (Lawrence.wilcock@hp.com) has worked
on a variety of telecommunications, cloud, and distributed
system projects within HP Labs and has been granted more
than 28 patents. He is currently a senior researcher in the
Automated Infrastructure Laboratory at HP Labs. He holds
an M.Eng. from the University of Bath.

NIGEL EDWARDS (nigel.edwards@hp.com) has worked on a
variety of security and distributed system projects and
products within HP businesses and the Labs. He is currently
a senior researcher in the Automated Infrastructure Labora-
tory. He holds a Ph.D. from the University of Bristol. He is a
member of the ACM and IET.

Figure 5. Scalability results deploying TikiWiki service.

Number of application servers (VMs)

Scalability results

1

20

0

Ex
ec

ut
io

n
ti

m
e

(s
)

40

60

80

100

120

2 3 4 5 6 7 8 9 10 11 12 13 14

Infrastructure time
Deployment time

ALCARAZ-CALERO LAYOUT 11/18/10 10:22 AM Page 131

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

